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Abstract. Originally, studies of the growth of fractal objects such as percolation clusters 
assumed that the growth sites have an infinite lifetime. Recently Bunde, Miyazima and 
Stanley have studied the effect of a fixed finite lifetime and they have found that the 
long-time growth evolves toward the kinetic growth walk with self-avoiding walk critical 
exponents. Here we consider for two dimensions the general case in which each growth 
site is randomly assigned infinite lifetime (with probability 9 )  or a finite lifetime (with 
probability 1 - 9 ) .  The phase diagram is similar to that of site-bond percolation, a model 
used to describe solvent effects in gelation. 

Recently considerable attention has focused on various models of growth processes 
(see, e.g., the recent review by Herrmann [ 11 as well as recent conference proceedings 
[2-41). This interest is motivated in part by the realisation that a wide variety of 
spreading phenomena-ranging from growth of epidemics and ‘fires’ to signal propaga- 
tion and network mechanics-have features in common. These spreading phenomena 
have been studied by a family of growth models in which the perimeter of the growing 
object is partitioned into an active or ‘growing’ part and a ‘blocked’ part. The active 
perimeter sites are commonly called growth sites (perimeter sites are empty neighbours 
of cluster sites). 

Perhaps the simplest growth model is that due to Eden [5], in which the entire 
perimeter is regarded as being active; growth proceeds by randomly choosing sites 
from this perimeter. The opposite extreme, in which almost the entire perimeter is 
blocked, is the kinetic growth walk (KGW) [6,7]. Here the next site can be added only 
to the perimeter of the last added site. The KGW gives rise to clusters with the same 
statistics as those found for a simple self-avoiding random walk [8,9]. 

An equivalent way of describing both the Eden model and the KGW is to think of 
the perimeter sites as being characterised by a lifetime T during which cluster sites can 
infect or ‘spread to’ their so far uninfected neighbouring sites [ 101. Thus each perimeter 
site is considered to be active only for T time steps, and is inactive thereafter. The 
Eden model corresponds to T = 00 and the KGW to T = 1. More generally, for a fixed 
lifetime T~ between 1 and 00 (figure l ( a ) ) ,  the cluster initially resembles an Eden cluster 
but after a characteristic time t ,  it crosses over to its asymptotic (large-time) form, a 
branched object which, numerically, has the same fractal dimension dr as the KGW 

( d , = :  for d = 2 )  [IO]. 
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Figurel. ( a )  Phase diagram for the growth model o f  [lo] in which each growth site is 
assumed to remain active only for a time r,,. For r,, = x?, one finds Eden clusters ( d , =  2) .  
For finite values of T ~ ,  one finds Eden clusters initially, but there is a crossover at large 
time to the asymptotic result, a KGW ( d , = $ ,  d , = O ) .  ( b )  Phase diagram of the present 
growth model, in which a non-zero fraction q of the growth sites is assumed to remain 
active forever, with the remaining fraction (1  - 9)  becoming inactive after time 7”. One 
finds Eden clusters for all values of 9 above a critical value qc (which turns out to be the 
bond percolation threshold). Below qc one finds K G W  behaviour if  r,,> 0 and finite clusters 
only if ro = 0. 

In previous work, all growth sites were treated as having the same lifetime. Moti- 
vated by the desire to describe spreading phenomena (such as model ‘fires’ in 
inhomogeneous media) in which growth sites are not all identical (e.g. not all trees in 
the front of the fire burn exactly 7 time units), we introduce here a model in which 
growth sites have a heterogeneity of lifetimes. We find that, even for strongly singular 
distributions, 

the growth process is characterised by KGW exponents. This finding is not surprising 
since K G W  exponents describe the homogeneous lifetime case for all finite values ro .  
In order to change the universality class, we must allow a non-zero fraction of the 
growth sites to have infinite lifetime. Indeed, we find strikingly different behaviour 
for a model in which a fraction q of the growth sites have infinite lifetime, with the 
remaining fraction 1 - q having a finite lifetime 70, i.e. 

00 probability q 
T,, probability 1 - q. 

r = (  

This new model reduces to the model discussed recently by Bunde et a1 [ lo]  when 
q = 0. We find that at a critical value of the parameter q, qc ,  the exponents change 
from KGW to Eden (figure l ( 6 ) )  for 70> 0. The special case ~ ~ = 0  gives rise to only 
finite clusters below qc.  Our  finding will be discussed below in terms of site-bond 
percolation, a polyfunctional condensation model used to describe solvent effects on 
gelation [ 11-15], where q plays the role of the bond probability P b  and qc is the bond 
percolation threshold ( qc = for the square lattice studied here). 

It is also possible to block growth sites from the outset. Suppose, e.g., that a fraction 
1 - p  of the growth sites of the Eden model ( 7  =a) are blocked. Then for p small, 
one still generates the compact Eden clusters. However, for a critical value p = p c  
given by the site percolation threshold, one finds the incipient percolating cluster 
[16-181. Below p c ,  only finite clusters exist. 
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We generalised our model to include this possibility that a fraction 1 - p of growth 
sites are blocked from the outset. We found (figures 2 ( a )  and ( b ) )  that the p - q  phase 
diagram is characterised by a phase boundary or line of percolation critical points 
bounding a region of Eden exponents. This part of the phase diagram is similar to 
the site-bond percolation model of the sol-gel transition (figure 2( c ) ) ,  an analogy we 
shall elaborate upon below. 

To obtain the phase diagram, we first calculate ( r ’ ) ,  the mean square distance of 
the last added site from the origin. Since a new site is added at each unit of time t ,  
the cluster mass is given by t and, asymptotically, 

We also studied how G, the number of growth sites, scales as 

G - td, Id,  (4) 

where d ,  is the fractal dimension o f t h e  growth sites. From (3) and (4) we thus obtain 
dc and d , .  

In the following, we discuss the two cases T~ = 0 and T > 0 separately. 
( a )  ro = 0. For T ~ )  = 0, the present growth model reduces, in the asymptotic ( t  -$ m) 

limit, to an equilibrium (non-growth) model, site-bond percolation, which was proposed 
in order to describe the phenomenon of polyfunctional condensation of f-functional 
monomers in a solvent [ 11-15]. The monomers and solvent molecules are considered 
to be randomly distributed on a lattice, with p being the probability that a site is 
occupied by a monomer and 1-p the probability that it is occupied by a solvent 
molecule. Neighbouring sites occupied by monomers can be chemically bonded with 
a probability pb. Thus if pb = 1 ,  site-bond percolation reduces to pure site percolation, 
with a critical point p $  -- 0.593 (for the square lattice) separating a region of finite 
clusters (‘sol phase’) from a region in which an infinite cluster is present (‘gel phase’). 
Similarly, if p s  = 1, site-bond percolation reduces to pure bond percolation with a 
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Figure2. ( a )  Generalisation of the phase diagram of figure l ( b )  to the case in which 
growth sites are open with probability p and blocked with probability 1 - p  and T,,=O. 
There is a critical line separating (i) a region where one finds Eden clusters and (ii) a 
region where one finds finite clusters. ( b )  Same as ( a ) ,  except T,>O. The horizontal 
broken line separates a finite cluster regime for p < pc from a regime for p 3 p ,  in which 
there is, in addition to finite clusters, a single infinite cluster on which K G W  can grow. ( c )  
Analogous phase diagram for the site-bond model of polyfunctional condensation of f- 
functional monomers in a solvent. Again, there is a critical line separating (i) a region 
where one finds an infinite cluster or ‘gel molecule’ and (ii) a region where one finds only 
finite clusters (the ‘sol phase’). 
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critical point p z  = f separating the sol from the gel phase. The general phase diagram 
is shown in figure 2 ( c ) .  

Clearly the parameter p of the present model plays the same role as p s  in site-bond 
percolation: clusters in the sol phase can grow only if a site is unblocked and this 
occurs with probability p .  The parameter q of the present model plays the same role 
as pb in site-bond percolation. To see this, consider first the case p = 1, so that none 
of the sites is blocked from the outset. A fraction q of the growth sites has infinite 
lifetime and a remaining fraction 1 - q has lifetime zero (they become inactive immedi- 
ately). That is, of the z bonds that the epidemic can use to spread at a given time t ,  
a fraction 9 are open and a remaining fraction 1 - q are blocked. Thus 9 plays the 
role of the bond probability. 

Another way of introducing site-bond percolation is to start with the fully occupied 
case p s = p b =  1 (all sites occupied by monomers, all bonds intact) and  d f=  d (‘gel 
phase’). Then we can perturb away from this limit by replacing active monomers by 
inactive solvent molecules ( p s s  1). When only a few monomers are removed, we still 
have the gel phase but when a critical solvent concentration is reached, the gel phase 
can no longer exist and we have a critical point, below which the sol phase exists. 
Similarly, if we perturb away from the limit by removing bonds ( p b s  l),  we find a 
critical point (the bond percolation threshold) below which we have only finite clusters. 

The present model can be regarded in an  analogous fashion. We start with the 
Eden model ( p  = 1, q = 1):  all sites are present, growth sites live forever and df= d 
and d, = d - 1 .  If only a few growth sites are blocked ( p  < l) ,  we still have the Eden 
model but when a critical concentration is reached, we find percolation clusters. 
Similarly, if we perturb away from the limit p = q = 1 by allowing a fraction (1 - q )  of 
the growth sites to have zero lifetime, then we find a critical point (the bond percolation 
threshold p : )  below which only finite clusters can exist. We have confirmed this picture 
by numerical simulations. 

( b )  ro> 0. For ro> 0, we find numerically that the present model has the same 
critical line (with percolation exponents d f = s  and d,= i )  bounding the region of 
compact Eden clusters ( d , =  2 ) .  However, the phase diagram outside the Eden region 
differs, since for p > pc  clusters can be grown that span the system. We anticipate finding 
KGW exponents since we know [lo] from figure l ( a )  that KGW exponents are found 
along the vertical line q = 0 of figure 2( b ) ;  adding a small fraction 9 of infinite lifetime 
sites should not change the asymptotic behaviour. To test this idea (and to determine 
the phase diagram) we carried out an extensive series of Monte Carlo simulations, 
using lattices of size 800 x 800 and t up  to 20 000 time steps. 

Figure 3 shows log-log plots of ( r 2 )  against time for three representative sets of 
( q , p ) ,  corresponding to the three distinct regions of the phase diagram of figure 2 ( a )  
where infinite clusters can grow; ro=3 for all plots. The data for the KGW region of 
the phase diagram have slope 2 / d f = $ ,  corresponding to the fact that d , = $  for the 
KGW. The data for p = p c  have slope 2 /  df = 1.05, since df = for percolation. Finally, 
the data for the Eden region of the phase diagram have slope 2 / d f  = 1. 

Figure4 shows the corresponding log-log plots of G against time for the same 
parameter values as shown in figure 3. We find d,=O in the KGW region (since 
asymptotically the number of growth sites approaches a constant). At the phase 
boundary, we find the percolation value d , / d f = 0 . 4  [16-181. In the Eden region d, 
approaches 1. 

In summary, then, we have introduced a dynamic growth model suitable for 
describing phenomena such as model forest fires and epidemics where the growth sites 
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Figure3. Log-log plot showing the dependence on time t of ( r 2 ) ,  the mean square distance 
of the last added site from the seed. For representative points from the three regions of 
the phase diagram of figure 2 ( a ) :  (0) p = 0.8, q = 0.5 (the K C W  region), (A)  p = 1, q = 0.5 
(the critical line) and (0)  p = 0.9, q = 0.9 (the Eden region). The asymptotic slope gives 
2 / d , .  The points shown represent averages of more than 5000 configurations for each time 
step. The lattice size is 800 x 800 and no configuration touched the boundary. 
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Figure4. Log-log plot showing the dependence on time t of G, the number of active 
growth sites, for the same three representative points from the three regions of the phase 
diagram shown in figure 3. The asymptotic slope is d , / d , .  

can have a range of lifetimes. We find that the same fractal structures are generated 
unless the distribution of lifetimes has a component with infinite lifetime. We carried 
out a series of Monte Carlo simulations for a model in which a fraction q of the sites 
are present with lifetime T = 00, the remaining fraction 1 - q are present with lifetime 
T~ and found that for T,, = 0 the phase diagram for the asymptotic t + CO limit is identical 
to the site-bond percolation model of polyfunctional condensation of $functional 
monomers in a solvent. For T ~ >  0, we find an additional phase, characterised by KGW 
exponents ( dr = 3, d ,  = 0) for that region of the phase diagram with p 2 p c .  
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